Telegram Group & Telegram Channel
Evolution Strategies as a Scalable Alternative to Reinforcement Learning [2017] - вспомним классику

Представьте ситуацию - вы приводите свою возлюбленную на встречу со своими друзьями и знакомыми, но она слишком отличается от нормальных людей - не так выглядит, не так говорит, увлекается странными вещами. Вообще-то, вроде как, ничего такого, но, каждый раз, когда вы приводите её в свою компанию, вам немножечко стыдно про себя из-за того, что она не такая.

Именно такая социальная динамика сложилась у меня с методом Evolution Strategies. У большинства людей, когда я произношу это название, на лице можно наблюдать весьма смешанные эмоции. Пришло время и вам их испытать.

Рассмотрим следующую постановку задачи - у вас есть пространство параметров и какая-то недифференцируемая метрика качества этих параметров, которую вы хотите максимизировать. Звучит достаточно печально, не правда ли?

Однако, если пространство параметров имеет не такую большую размерность, то печаль становится не такой яркой, и существуют различные подходы к тому, как такую задачу можно решать. Evolution Strategies - один из них.

Итак, вы находитесь в текущей точке пространства параметров - Theta. Метод пытается совершить градиентный подъём в нём, но, так как градиентов-то никаких нет, мы пытаемся его оценить как бы с помощью конечной разности. Одна итерация метода выглядит так:

1) Сэмплируем N стандартных нормальных шумов
2) Генерируем N новых Theha_i = Theta + Sigma * Noise_i
3) Получаем качество в этих точках - R_i
4) Оценка градиента Grad равна сумме по всем R_i * Noise_i / (N * Sigma)
5) Делаем шаг по нему -Theta_new = Theta + Alpha * Grad

У алгоритма есть следующие плюсы:
1) Простота - в практических кейсах, а не в статьях на NeurIPS, важно, чтобы метод был легко встраиваемый и легко дебагаемый
2) Легко масштабируемый - при наличии бесконечного компьюта, алгоритм суперлегко масштабируется. Стало в 2 раза больше компьютеров - увеличиваем N в 2 раза и улучшаем сходимость.
3) Нетребовательный к коммуникации - на первый взгляд, нам надо передавать векторы шума между обучатором и воркерами. На самом же деле можно обойтись и без этого. Если у воркера и у обучатора есть доступ к одному и тому же генератору случайных чисел, они могут восстановить из него шум. передавая лишь сид.

В статье авторы успешно обучают модель на RL-задаче с помощью ES. Конечно, метод не самый мощный с точки зрения RL - он не использует информацию об индивидуальных наградах и какие-либо реальные градиенты, тем не менее, он работает.

Я уже делал обзоры на статьи, где его применяют. Метод очень удачно ложится на тип Meta Learning, в котором вы оптимизируете модель с низким количеством параметров и большим скрытым состоянием, максимизируя её производительность на валидации. Да, речь про мой любимый VSML, эту и эту статью, где занимаются чем-то похожим.

У каждого метода есть свои плюсы, минусы, а также оптимальное время и место для применения. Призываю коллег не заниматься алгошеймингом.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/259
Create:
Last Update:

Evolution Strategies as a Scalable Alternative to Reinforcement Learning [2017] - вспомним классику

Представьте ситуацию - вы приводите свою возлюбленную на встречу со своими друзьями и знакомыми, но она слишком отличается от нормальных людей - не так выглядит, не так говорит, увлекается странными вещами. Вообще-то, вроде как, ничего такого, но, каждый раз, когда вы приводите её в свою компанию, вам немножечко стыдно про себя из-за того, что она не такая.

Именно такая социальная динамика сложилась у меня с методом Evolution Strategies. У большинства людей, когда я произношу это название, на лице можно наблюдать весьма смешанные эмоции. Пришло время и вам их испытать.

Рассмотрим следующую постановку задачи - у вас есть пространство параметров и какая-то недифференцируемая метрика качества этих параметров, которую вы хотите максимизировать. Звучит достаточно печально, не правда ли?

Однако, если пространство параметров имеет не такую большую размерность, то печаль становится не такой яркой, и существуют различные подходы к тому, как такую задачу можно решать. Evolution Strategies - один из них.

Итак, вы находитесь в текущей точке пространства параметров - Theta. Метод пытается совершить градиентный подъём в нём, но, так как градиентов-то никаких нет, мы пытаемся его оценить как бы с помощью конечной разности. Одна итерация метода выглядит так:

1) Сэмплируем N стандартных нормальных шумов
2) Генерируем N новых Theha_i = Theta + Sigma * Noise_i
3) Получаем качество в этих точках - R_i
4) Оценка градиента Grad равна сумме по всем R_i * Noise_i / (N * Sigma)
5) Делаем шаг по нему -Theta_new = Theta + Alpha * Grad

У алгоритма есть следующие плюсы:
1) Простота - в практических кейсах, а не в статьях на NeurIPS, важно, чтобы метод был легко встраиваемый и легко дебагаемый
2) Легко масштабируемый - при наличии бесконечного компьюта, алгоритм суперлегко масштабируется. Стало в 2 раза больше компьютеров - увеличиваем N в 2 раза и улучшаем сходимость.
3) Нетребовательный к коммуникации - на первый взгляд, нам надо передавать векторы шума между обучатором и воркерами. На самом же деле можно обойтись и без этого. Если у воркера и у обучатора есть доступ к одному и тому же генератору случайных чисел, они могут восстановить из него шум. передавая лишь сид.

В статье авторы успешно обучают модель на RL-задаче с помощью ES. Конечно, метод не самый мощный с точки зрения RL - он не использует информацию об индивидуальных наградах и какие-либо реальные градиенты, тем не менее, он работает.

Я уже делал обзоры на статьи, где его применяют. Метод очень удачно ложится на тип Meta Learning, в котором вы оптимизируете модель с низким количеством параметров и большим скрытым состоянием, максимизируя её производительность на валидации. Да, речь про мой любимый VSML, эту и эту статью, где занимаются чем-то похожим.

У каждого метода есть свои плюсы, минусы, а также оптимальное время и место для применения. Призываю коллег не заниматься алгошеймингом.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/259

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Knowledge Accumulator from sg


Telegram Knowledge Accumulator
FROM USA